Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Mar 07 2017 13:27:15
%S 4,4,2,2,6,2,6,2,6,2,4,6,6,8,4,4,14,4,2,10,6,6,6,10,2,12,12,12,12,2,6,
%T 6,6,10,14,4,14,14,10,4,8,6,6,8,8,10,6,8,8,2,12,8,8,6,12,18,18,10,6,6,
%U 6,2,2,12,12,6,12,8,10,8,10,8,4,6,8,4,14,12,2,2,14,14,14,14,2,20,20,8,10,8
%N a[n]=A098085[n]-A096215[n], difference between next and previous primes to A011974[n], the sum of two consecutive primes.
%F a(n)=NextPrime[p(n)+p(n+1)]-PreviousPrime[p(n)+p(n+1)]
%e n=8, p(8)+p(9)=19+23=42,a[8]=43-41=2=a(8).
%t <<NumberTheory`NumberTheoryFunctions` t1=Table[PreviousPrime[Prime[n]+Prime[n+1]], {n, 1, 128}]; t2=Table[NextPrime[Prime[n]+Prime[n+1]], {n, 1, 128}];t2-t1
%t NextPrime[#]-NextPrime[#,-1]&/@(Total/@Partition[Prime[Range[100]],2,1]) (* _Harvey P. Dale_, Mar 07 2017 *)
%Y Cf. A098085, A096215, A011974.
%K nonn
%O 1,1
%A _Labos Elemer_, Nov 17 2004