OFFSET
1,1
COMMENTS
If 5*2^n-1 is prime then m=3*2^(n+1)*(5*2^n-1) is in the sequence because m+phi(m)=2^(n+1)*3*(5*2^n-1)+2^(n+1)*(5*2^n-2)=2^(n+1) *(20*2^n-5)=2^(n+1)*5*(2^(n+2)-1)=1/2*4*(2^(n+2)-1)*(5*2^n)= 1/2*sigma(3)*sigma(2^(n+1))*sigma(5*2^n-1)=1/2*sigma(3*2^(n+1) *(5*2^n-1))=1/2*sigma(m). So 3*2^(A001770+1)*(5*2^A001770-1) is a subsequence of this sequence. A110084 is this subsequence. Next term is greater than 10^8. - Farideh Firoozbakht, Aug 04 2005
a(23) > 10^12. - Donovan Johnson, Feb 29 2012
EXAMPLE
n=456: phi(456) = 144, sigma(456) = 1200.
MATHEMATICA
Do[If[DivisorSigma[1, m] == 2m + 2 EulerPhi[m], Print[m]], {m, 100000000}] (Firoozbakht)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 05 2004
EXTENSIONS
Two more terms from Farideh Firoozbakht, Aug 04 2005
a(10)-a(22) from Donovan Johnson, Feb 29 2012
STATUS
approved