%I
%S 3,5,11,17,23,47,59,83,107,137,167,179,227,239,257,263,317,347,359,
%T 383,431,443,467,479,503,557,563,587,647,659,719,797,827,839,857,863,
%U 887,983,1019,1091,1097,1187,1223,1259,1283,1307,1319,1367,1439,1487,1499
%N Primes p such that the denominator of the polyBernoulli number B(2,n) equals 8p.
%C p such that A027644(p) = 8p.
%t f[n_] := Denominator[(1)^n*Sum[(1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]]; l = {}; Do[p = Prime[n]; If[f[p] == 8p, AppendTo[l, p]], {n, 240}]; l (* _Robert G. Wilson v_, Oct 28 2004 *)
%K nonn
%O 1,1
%A _Ralf Stephan_, Oct 27 2004
%E More terms from _Robert G. Wilson v_, Oct 28 2004
