login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099596 Primes p such that the denominator of the poly-Bernoulli number B(2,n) equals 8p. 0

%I

%S 3,5,11,17,23,47,59,83,107,137,167,179,227,239,257,263,317,347,359,

%T 383,431,443,467,479,503,557,563,587,647,659,719,797,827,839,857,863,

%U 887,983,1019,1091,1097,1187,1223,1259,1283,1307,1319,1367,1439,1487,1499

%N Primes p such that the denominator of the poly-Bernoulli number B(2,n) equals 8p.

%C p such that A027644(p) = 8p.

%t f[n_] := Denominator[(-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]]; l = {}; Do[p = Prime[n]; If[f[p] == 8p, AppendTo[l, p]], {n, 240}]; l (* _Robert G. Wilson v_, Oct 28 2004 *)

%K nonn

%O 1,1

%A _Ralf Stephan_, Oct 27 2004

%E More terms from _Robert G. Wilson v_, Oct 28 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 21:28 EDT 2019. Contains 328244 sequences. (Running on oeis4.)