login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099589 Expansion of x^3 / (1 - 4x + 6x^2 - 4x^3 + 2x^4). 6
0, 0, 0, 1, 4, 10, 20, 34, 48, 48, 0, -164, -560, -1352, -2704, -4616, -6528, -6528, 0, 22288, 76096, 183712, 367424, 627232, 887040, 887040, 0, -3028544, -10340096, -24963200, -49926400, -85229696, -120532992, -120532992, 0, 411525376, 1405035520, 3392055808 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

{A099586, A099587, A099588, A099589} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x)} of order 4. For the definition, see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jul 04 2017

REFERENCES

A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.

Vladimir Shevelev, Coefficient of x^k in ((x+1)^n modulo x^N+1), seqfan, Thu Jul 20 2017.

G. Tollisen and T. Lengyel, A congruential identity and the 2-adic order of lacunary sums of binomial coefficients, Integers 4 (2004), #A4.

Maran van Heesch, The multiplicative complexity of symmetric functions over a field with characteristic p, Thesis, 2014.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-2).

FORMULA

G.f.: x^3/((1-x)^4 + x^4), the binomial transform of x^3/(1+x^4). - Paul Barry, Apr 01 2005

Coefficient of x^3 in (1+x)^n mod 1+x^4.

a(n) = (1/(2*sqrt(2)))*((2-sqrt(2))^(n/2)*(cos(3*Pi*n/8) + sin(3*Pi*n/8)) + (2+sqrt(2))^(n/2)*(sin(Pi*n/8) - cos(Pi*n/8))). - Paul Barry, Apr 01 2005

From Colin Barker, Nov 08 2015: (Start)

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-2*a(n-4) for n>4.

G.f.: x^3 / (2*x^4-4*x^3+6*x^2-4*x+1).

(End)

From Vladimir Shevelev, Jul 04 2017: (Start)

a(n) = Sum_{t >= 0}(-1)^t*binomial(n,4*t+3).

a(n) = round((2+sqrt(2))^(n/2)*cos(Pi*(n-6)/8)/2), where round(x) is the integer nearest to x.

a(n+m) = a(n)*K_1(m) + K_3(n)*K_2(m) + K_2(n)*K_3(m) + K_1(n)*a(m), where

K_1 is A099586, K_2 is A099587, K_3 is A099588. (End)

MATHEMATICA

Round@Table[(1/(2*sqrt(2)))*(2-sqrt(2))^(n/2)*(Cos(3*Pi*n/8) + Sin(3*Pi*n/8)) + (2+sqrt(2))^(n/2)*(Sin(Pi*n/8) - Cos(Pi*n/8))), {n, 1, 200}] (* G. C. Greubel, Nov 07 2015 *)

RecurrenceTable[{a[n]== 4*a[n-1] - 6*a[n-2] + 4*a[n-3] - 2*a[n-4], a[1]=0, a[2]=0, a[3]=1, a[4]=4}, a, {n, 1, 250}] (* G. C. Greubel, Nov 10 2015 *)

Table[Sum[(-1)^k*Binomial[n, 4 k + 3], {k, 0, n}], {n, 0, 37}] (* Michael De Vlieger, Jun 30 2017 *)

a[n_] := n*(n-1)*(n-2)/6 HypergeometricPFQ[{(3-n)/4, (4-n)/4, (5-n)/4, (6-n)/4}, {5/4, 3/2, 7/4}, -1]; Array[a, 40, 0] (* Jean-Fran├žois Alcover, Jul 20 2017, from Vladimir Shevelev's first formula *)

PROG

(PARI) a(n) = polcoeff(((1+x)^n)%(x^4+1), 3)

(PARI) concat([0, 0], Vec(x^3/((1-x)^4+x^4) + O(x^50))) \\ Altug Alkan, Nov 08 2015

(PARI) a(n) = sum(t=0, (n-3)\4, (-1)^t*binomial(n, 4*t+3)); \\ Michel Marcus, Jun 30 2017

CROSSREFS

Cf. A099586, A099587, A099588.

Sequence in context: A008045 A008124 A019457 * A008141 A119651 A279015

Adjacent sequences:  A099586 A099587 A099588 * A099590 A099591 A099592

KEYWORD

sign,easy

AUTHOR

Ralf Stephan, Oct 24 2004

EXTENSIONS

a(0)=0 added by N. J. A. Sloane, Jul 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 05:36 EDT 2019. Contains 321422 sequences. (Running on oeis4.)