login
Row sums of triangle A099514, so that a(n) = Sum_{k=0..n} coefficient of z^k in (1 + z + 2*z^2)^(n-[k/2]), where [k/2] is the integer floor of k/2.
1

%I #3 Mar 30 2012 18:36:43

%S 1,2,5,13,31,78,190,469,1150,2825,6933,17015,41754,102454,251393,

%T 616826,1513453,3713389,9111087,22354678,54848638,134574493,330186518,

%U 810131889,1987705301,4876948743,11965871650,29358946070,72033839657

%N Row sums of triangle A099514, so that a(n) = Sum_{k=0..n} coefficient of z^k in (1 + z + 2*z^2)^(n-[k/2]), where [k/2] is the integer floor of k/2.

%F G.f.: (1-2*x^2)/(1-2*x-3*x^2+3*x^3+4*x^4).

%o (PARI) a(n)=sum(k=0,n,polcoeff((1+x+2*x^2+x*O(x^k))^(n-k\2),k))

%Y Cf. A099514.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 21 2004