%I #17 Mar 15 2024 03:55:59
%S 1,3,6,2,8,4,10,14,13,7,15,9,17,11,19,29,5,31,26,34,50,16,30,18,32,20,
%T 61,23,35,25,37,27,39,63,42,66,45,69,48,72,51,33,53,79,56,36,58,38,60,
%U 40,62,94,12,96,124,44,70,46,131,49,73,113,76,52,78,54,80,192,84,126,87
%N a(1)=1; for n > 1, a(n)=smallest m>0 that has not appeared so far in the sequence such that m+a(n-1) is a multiple of n.
%H Robert Israel, <a href="/A099506/b099506.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1)=1 by definition.
%e a(2)=3 because then a(2)+a(1)=3+1=4 which is a multiple of 2. a(2) cannot be 1 (which would lead to a sum of 2) because this has already appeared.
%e Likewise, a(3)=6 so that a(3)+a(2)=6+3=9 which is a multiple of 3.
%e a(4)=2 so that a(4)+a(3)=2+6=8 and so on.
%o (PARI) v=[1];n=1;while(n<100,s=n+v[#v];if(!(s%(#v+1)||vecsearch(vecsort(v),n)),v=concat(v,n);n=0);n++);v \\ _Derek Orr_, Jun 16 2015
%o (MATLAB)
%o N = 100;
%o M = 10*N; % find a(1) to a(N) or until a(n) > M
%o B = zeros(1,M);
%o A = zeros(1,N);
%o mmin = 2;
%o A(1) = 1;
%o B(1) = 1;
%o for n = 2:N
%o for m = mmin:M
%o if mmin == m && B(m) == 1
%o mmin = mmin+1;
%o elseif B(m) == 0 && rem(m + A(n-1),n) == 0
%o A(n) = m;
%o B(m) = 1;
%o if m == mmin
%o mmin = mmin + 1;
%o end;
%o break
%o end;
%o end;
%o if A(n) == 0
%o break
%o end
%o end;
%o if A(n) == 0
%o A(1:n-1)
%o else
%o A
%o end; % _Robert Israel_, Jun 17 2015
%Y Cf. A099507 for positions of occurrences of integers in this sequence.
%Y Cf. A125717.
%K easy,nonn
%O 1,2
%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 20 2004