|
|
A099495
|
|
A Chebyshev transform of Fib(n)^2.
|
|
0
|
|
|
0, 1, 1, 2, 6, 12, 25, 55, 118, 254, 548, 1179, 2539, 5470, 11780, 25370, 54641, 117681, 253452, 545866, 1175642, 2532005, 5453235, 11744748, 25294914, 54478198, 117330859, 252697979, 544241040, 1172143560, 2524470640, 5437006381
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
A Chebyshev transform of A007598, which has g.f. x(1-x)/((1+x)(1-3x+x^2)). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
|
|
LINKS
|
Table of n, a(n) for n=0..31.
Index entries for linear recurrences with constant coefficients, signature (2,-1,3,-1,2,-1).
|
|
FORMULA
|
G.f.: x(1-x+x^2)/((1+x+x^2)(1-3x+3x^2-3x^3+x^4)); a(n)=2a(n-1)-a(n-2)+3a(n-3)-a(n-4)+2a(n-5)-a(n-6); a(n)=sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*F(n-2k)^2}.
|
|
CROSSREFS
|
Sequence in context: A128020 A140659 A238462 * A232164 A214663 A151385
Adjacent sequences: A099492 A099493 A099494 * A099496 A099497 A099498
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Oct 19 2004
|
|
STATUS
|
approved
|
|
|
|