|
|
A099464
|
|
Trisection of tribonacci numbers.
|
|
4
|
|
|
0, 1, 7, 44, 274, 1705, 10609, 66012, 410744, 2555757, 15902591, 98950096, 615693474, 3831006429, 23837527729, 148323355432, 922906855808, 5742568741225, 35731770264967, 222332455004452, 1383410902447554, 8607945812375585, 53560898629395777, 333269972246340068
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Let A = [1,1,1; 2,4,3; 1,2,2]. a(n) is given by the (1,2) term in A^n.
|
|
LINKS
|
Table of n, a(n) for n=0..23.
Index entries for linear recurrences with constant coefficients, signature (7,-5,1).
|
|
FORMULA
|
G.f.: x/(1-7*x+5*x^2-x^3).
a(n) = 7a(n-1) -5a(n-2) +a(n-3).
a(n) = A000073(3n).
a(n) = Sum_{i>=n-1} A120987(i,n-1) for n>0. - Alois P. Heinz, Dec 11 2015
|
|
MAPLE
|
a:= n-> (<<0|1|0>, <0|0|1>, <1|-5|7>>^n)[3, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Dec 11 2015
|
|
MATHEMATICA
|
LinearRecurrence[{7, -5, 1}, {0, 1, 7}, 30] (* Harvey P. Dale, Jan 14 2016 *)
|
|
CROSSREFS
|
Cf. A009943, A120987.
Sequence in context: A218992 A190974 A027279 * A254660 A093738 A091127
Adjacent sequences: A099461 A099462 A099463 * A099465 A099466 A099467
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Oct 16 2004
|
|
STATUS
|
approved
|
|
|
|