

A099461


An Alexander sequence for the knot 9_48.


2



1, 7, 38, 196, 1001, 5110, 26093, 133252, 680510, 3475339, 17748434, 90640627, 462898478, 2364006148, 12072895733, 61655851222, 314874250049, 1608051650884, 8212262868470, 41939735818687, 214184746483778, 1093833919809295, 5586171115205846, 28528378178106436, 145693417671662033, 744051127629095062, 3799842775146922277, 19405662567631938052, 99104031922539424718
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The denominator 17x+11x^27x^3+x^4 is a parameterization of the Alexander polynomial for the knot 9_48. 1/(17*x+11*x^27*x^3+x^4) is the image of the g.f. of A099459 under the modified Chebyshev transform A(x)>(1/(1+x^2)^2)*A(x/(1+x^2)).


LINKS

Table of n, a(n) for n=0..28.
Dror BarNatan, The Rolfsen Knot Table
Index entries for linear recurrences with constant coefficients, signature (7,11,7,1).


FORMULA

a(n) = A099460(n)  A099460(n2).
G.f.: (1x)*(1+x)*(1+x^2)/(17*x+11*x^27*x^3+x^4).  Corrected by R. J. Mathar, Nov 23 2012


CROSSREFS

Sequence in context: A014827 A141845 A048437 * A104553 A027241 A292761
Adjacent sequences: A099458 A099459 A099460 * A099462 A099463 A099464


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Oct 16 2004


STATUS

approved



