login
A099455
An Alexander sequence for the knot 8_12.
3
1, 7, 36, 168, 755, 3346, 14747, 64848, 284892, 1251103, 5493314, 24118255, 105887532, 464877504, 2040939083, 8960260498, 39337870403, 172703402424, 758212386132, 3328747303735, 14614056052994, 64159460722903, 281676515111412, 1236632261449368, 5429133302704547
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 8_12. 1/(1-7*x+13*x^2-7*x^3+x^4) is the image of the g.f. of A099453 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).
FORMULA
G.f.: (1-x)*(1+x)*(1+x^2)/(1-7*x+13*x^2-7*x^3+x^4). - corrected Nov 24 2012
a(n) = A099454(n) - A099454(n-2).
MATHEMATICA
LinearRecurrence[{7, -13, 7, -1}, {1, 7, 36, 168, 755}, 30] (* Harvey P. Dale, Jan 31 2017 *)
CROSSREFS
Cf. A099454.
Sequence in context: A292486 A026856 A038748 * A102053 A058681 A246417
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved