login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099358 a(n) = sum of digits of k^4 as k runs from 1 to n. 0
1, 8, 17, 30, 43, 61, 68, 87, 105, 106, 122, 140, 162, 184, 202, 227, 246, 273, 283, 290, 317, 339, 370, 397, 422, 459, 477, 505, 530, 539, 561, 592, 619, 644, 663, 699, 727, 752, 770, 783, 814, 841, 866, 903, 921, 958, 1001, 1028, 1059, 1072, 1099, 1124, 1161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A055565.

LINKS

Table of n, a(n) for n=1..53.

FORMULA

a(n) = a(n-1) + sum of decimal digits of n^4.

a(n) = sum(k=1, n, sum(m=0, floor(log(k^4)), floor(10((k^4)/(10^(((floor(log(k^4))+1))-m)) - floor((k^4)/(10^(((floor(log(k^4))+1))-m))))))).

General formula: a(n)_p = sum(k=1, n, sum(m=0, floor(log(k^p)), floor(10((k^p)/(10^(((floor(log(k^p))+1))-m)) - floor ((k^p)/(10^(((floor(log(k^p))+1))-m))))))). Here a(n)_p is a sum of digits of k^p from k=1 to n.

EXAMPLE

a(3) = sum_digits(1^4) + sum_digits(2^4) + sum_digits(3^4) = 1 + 7 + 9 = 17.

MATHEMATICA

f[n_] := Block[{s = 0, k = 1}, While[k <= n, s = s + Plus @@ IntegerDigits[k^4]; k++ ]; s]; Table[ f[n], {n, 50}] (* Robert G. Wilson v, Nov 18 2004 *)

CROSSREFS

Cf. k^1 in A037123, k^2 in A071317 & k^3 in A071121.

Sequence in context: A028884 A322473 A247117 * A077222 A077221 A226601

Adjacent sequences:  A099355 A099356 A099357 * A099359 A099360 A099361

KEYWORD

nonn,easy,base

AUTHOR

Yalcin Aktar, Nov 16 2004

EXTENSIONS

Edited and extended by Robert G. Wilson v, Nov 18 2004

Existing example replaced with a simpler one by Jon E. Schoenfield, Oct 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 02:18 EDT 2021. Contains 343072 sequences. (Running on oeis4.)