OFFSET
1,5
FORMULA
Taking A099328 to A099331 as the rows of an array T, the recurrences for these row sequences are given for n>=2 by T(n, 0) = T(n-1, 2) + T(n-2, 1), T(n, 1) = T(n-1, 3) + T(n-2, 0) + T(n-2, 2), T(n, 2) = T(n-1, 0) + T(n-2, 1) + T(n-2, 3), T(n, 3) = T(n-1, 1) + T(n-2, 2), with initial values T(0, 0)=1, T(1, 2)=1.
From Chai Wah Wu, Aug 09 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + 3*a(n-4) + a(n-5) + a(n-6) - a(n-7) for n > 7.
G.f.: x^3*(x^3 - x^2 - 1)/((-x^4 + 2*x^3 + 1)*(x^3 + x^2 + x - 1)). (End)
EXAMPLE
a(6) counts 7 paths from (0,0) to (6,1); the final move in 4 of the paths is from the point (5,3), the final move in 1 path is from (4,2) and the final move in the other 3 paths is from (4,0).
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 12 2004
STATUS
approved