%I #18 Aug 31 2019 11:51:47
%S 24,120,360,840,2520,7560,10080,15120,27720,50400,60480,83160,110880,
%T 166320,332640,352800,554400,665280,967680,1081080,1441440,2162160,
%U 2822400,3870720,3880800,4324320,7207200,8648640,10644480,10810800,17297280,21621600,31046400
%N Minimal numbers having in canonical prime factorization at least one factor p^e such that e+1 is not prime, p prime and e>0.
%C A minimal number is the smallest number with a given number of divisors, see A007416;
%C A000005(a(n)) = A072066(m) for some m.
%H David A. Corneth and Amiram Eldar, <a href="/A099317/b099317.txt">Table of n, a(n) for n = 1..9000</a> (terms <= 10^45)
%e A007416(38) = A005179(64) = 7560 = 2^3*3^3*5*7;
%e A007416(39) = A005179(72) = 10080 = 2^5*3^2*5*7.
%Y Cf. A000005, A005179, A007416, A072066.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Oct 12 2004
%E More terms from _Amiram Eldar_, Jul 09 2019