

A099305


Number of solutions of the equation (n+k)' = n' + k', with 1 <= k <= 2n, where n' denotes the arithmetic derivative of n.


2



1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Observe that when n and c*n have the same parity, a(c*n) >= a(n) for all integers c. For even n, there are always at least two solutions, k=n/2 and k=2n. For odd n, k=2n is always a solution.


REFERENCES

See A003415


LINKS

Table of n, a(n) for n=1..105.


MATHEMATICA

dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[lst={}; k=0; While[k<2n, k++; While[k<=2n && dn[n]+dn[k] != dn[n+k], k++ ]; If[dn[n]+dn[k]==dn[n+k], AppendTo[lst, k]]]; Length[lst], {n, 100}]


CROSSREFS

Cf. A003415 (arithmetic derivative of n), A099304 (least k > 0 such that (n+k)' = n' + k').
Sequence in context: A214715 A244145 A086435 * A033109 A235644 A175096
Adjacent sequences: A099302 A099303 A099304 * A099306 A099307 A099308


KEYWORD

nonn


AUTHOR

T. D. Noe, Oct 12 2004


STATUS

approved



