login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099305 Number of solutions of the equation (n+k)' = n' + k', with 1 <= k <= 2n, where n' denotes the arithmetic derivative of n. 2
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Observe that when n and c*n have the same parity, a(c*n) >= a(n) for all integers c. For even n, there are always at least two solutions, k=n/2 and k=2n. For odd n, k=2n is always a solution.

REFERENCES

See A003415

LINKS

Table of n, a(n) for n=1..105.

MATHEMATICA

dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[lst={}; k=0; While[k<2n, k++; While[k<=2n && dn[n]+dn[k] != dn[n+k], k++ ]; If[dn[n]+dn[k]==dn[n+k], AppendTo[lst, k]]]; Length[lst], {n, 100}]

CROSSREFS

Cf. A003415 (arithmetic derivative of n), A099304 (least k > 0 such that (n+k)' = n' + k').

Sequence in context: A214715 A244145 A086435 * A033109 A235644 A175096

Adjacent sequences:  A099302 A099303 A099304 * A099306 A099307 A099308

KEYWORD

nonn

AUTHOR

T. D. Noe, Oct 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 13:25 EST 2014. Contains 250196 sequences.