OFFSET
2,3
COMMENTS
This is the largest member of the set I(n) in the paper by Ufnarovski and Ahlander. They show that a(n) <= (n/2)^2.
REFERENCES
See A003415
LINKS
T. D. Noe, Table of n, a(n) for n=2..1000
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Table[x=Max[Flatten[Position[d1, n]]]; If[x>-Infinity, x, 0], {n, 2, 400}]
PROG
(Python)
from sympy import factorint
def A099303(n):
for m in range(n**2>>2, 0, -1):
if sum((m*e//p for p, e in factorint(m).items())) == n:
return m
return 0 # Chai Wah Wu, Sep 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved