%I #8 Jun 08 2016 16:38:41
%S 0,1,17,324,6137,116281,2203200,41744521,790942697,14986166724,
%T 283946225057,5379992109361,101935903852800,1931402181093841,
%U 36594705536930177,693368003020579524,13137397351854080777
%N Unsigned member r=-17 of the family of Chebyshev sequences S_r(n) defined in A092184.
%C ((-1)^(n+1))*a(n) = S_{-17}(n), n>=0, defined in A092184.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (18,18,-1).
%F a(n)= 2*(T(n, 19/2)-(-1)^n)/21, with twice Chebyshev's polynomials of the first kind evaluated at x=19/2: 2*T(n, 19/2)=A078369(n)= ((19+sqrt(357))^n + (19-sqrt(357))^n)/2^n.
%F a(n)= 19*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
%F a(n)= 18*a(n-1) + 18*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=17.
%F G.f.: x*(1-x)/((1+x)*(1-19*x+x^2)) = x*(1-x)/(1-18*x-18*x^2+x^3) (from the Stephan link, see A092184).
%K nonn,easy
%O 0,3
%A _Wolfdieter Lang_, Oct 18 2004