The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099271 Unsigned member r=-13 of the family of Chebyshev sequences S_r(n) defined in A092184. 0
 0, 1, 13, 196, 2925, 43681, 652288, 9740641, 145457325, 2172119236, 32436331213, 484372848961, 7233156403200, 108012973199041, 1612961441582413, 24086408650537156, 359683168316474925, 5371161116096586721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS ((-1)^(n+1))*a(n) = S_{-13}(n), n>=0, defined in A092184. LINKS Index entries for linear recurrences with constant coefficients, signature (14, 14, -1). FORMULA a(n)= 2*(T(n, 15/2)-(-1)^n)/17, with twice Chebyshev's polynomials of the first kind evaluated at x=15/2: 2*T(n, 15/2)=A078365(n)=((15+sqrt(221))^n + (15-sqrt(221))^n)/2^n. a(n)= 15*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1. a(n)= 14*a(n-1) + 14*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=13. G.f.: x*(1-x)/((1+x)*(1-15*x+x^2)) = x*(1-x)/(1-14*x-14*x^2+x^3) (from the Stephan link, see A092184). MATHEMATICA LinearRecurrence[{14, 14, -1}, {0, 1, 13}, 41] (* or *) CoefficientList[Series[ (x-x^2)/(1-14 x-14 x^2+x^3), {x, 0, 40}], x] (* Harvey P. Dale, Jun 18 2011 *) CROSSREFS Sequence in context: A221581 A015690 A027773 * A081796 A140536 A289734 Adjacent sequences:  A099268 A099269 A099270 * A099272 A099273 A099274 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 14:08 EST 2020. Contains 331280 sequences. (Running on oeis4.)