The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099263 a(n) = (1/40320) 8^n + (1/1440) 6^n + (1/360) 5^n + (1/64) 4^n + (11/180) 3^n + (53/288) 2^n + 103/280. Partial sum of Stirling numbers of second kind S(n,i), i=1..8 (i.e., a(n) = Sum_{i=1..8} S(n,i)). 8
 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115929, 677359, 4189550, 27243100, 184941915, 1301576801, 9433737120, 69998462014, 529007272061, 4054799902003, 31415584940850, 245382167055488, 1928337630016767, 15222915798289765 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Density of regular language L over {1,2,3,4,5,6,7,8} (i.e., number of strings of length n in L) described by regular expression with c=8: sum_{i=1..c} (prod_{j=1..i}(j(1+..+j)*) where sum stands for union and prod for concatenation. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order" N. Moreira and R. Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto. N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8. Index entries for linear recurrences with constant coefficients, signature (29,-343,2135,-7504,14756,-14832,5760). FORMULA For c=8, a(n) = (c^n)/c! + Sum_{k=1..c-2} ((k^n)/k!*(Sum_{j=2..c-k} (((-1)^j)/j!))) or = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1 g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)!, c > 1 g(k, c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c. G.f.: -x*(3641*x^6 - 6583*x^5 + 4566*x^4 - 1579*x^3 + 290*x^2 - 27*x + 1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). [Colin Barker, Dec 05 2012] a(n) = Sum_{k=0..8} Stirling2(n,k). G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=8. - Robert A. Russell, Apr 25 2018 MATHEMATICA CoefficientList[Series[-(3641 x^6 - 6583 x^5 + 4566 x^4 - 1579 x^3 + 290 x^2 - 27 x + 1) / ((x - 1) (2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 27 2017 *) Table[Sum[StirlingS2[n, k], {k, 0, 8}], {n, 1, 30}] (* Robert A. Russell, Apr 25 2018 *) LinearRecurrence[{29, -343, 2135, -7504, 14756, -14832, 5760}, {1, 2, 5, 15, 52, 203, 877}, 30] (* Harvey P. Dale, Aug 27 2019 *) PROG (MAGMA) [(1/40320)*8^n+(1/1440)*6^n+(1/360)*5^n+(1/64)*4^n +(11/180)*3^n+(53/288)*2^n+103/280: n in [1..30]]; // Vincenzo Librandi, Jul 27 2017 (PARI) a(n) = (1/40320)*8^n + (1/1440)*6^n + (1/360)*5^n + (1/64)*4^n + (11/180)*3^n + (53/288)*2^n + 103/280; \\ Altug Alkan, Apr 25 2018 CROSSREFS Cf. A007051, A007581, A056272, A056273, A099262. A row of the array in A278984. Sequence in context: A287279 A287257 A287669 * A192865 A229225 A276725 Adjacent sequences:  A099260 A099261 A099262 * A099264 A099265 A099266 KEYWORD easy,nonn AUTHOR Nelma Moreira (nam(AT)ncc.up.pt), Oct 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 06:28 EST 2021. Contains 340266 sequences. (Running on oeis4.)