login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099263 a(n) = 1/40320 8^n + 1/1440 6^n + 1/360 5^n + 1/64 4^n + 11/180 3^n + 53/288 2^n + 103/280. Partial sum of Stirling numbers of second kind S(n,i), i=1..8 (i.e. a(n)=sum_{i=1..8}S(n,i)). 7
1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115929, 677359, 4189550, 27243100, 184941915, 1301576801, 9433737120, 69998462014, 529007272061, 4054799902003, 31415584940850, 245382167055488, 1928337630016767, 15222915798289765 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Density of regular language L over {1,2,3,4,5,6,7,8} (i.e. number of strings of length n in L) described by regular expression with c=8: sum_{i=1..c}(prod_{j=1..i}(j(1+..+j)*) where sum stands for union and prod for concatenation.

REFERENCES

Nelma Moreira and Rogerio Reis, On the density of languages representing finite set partitions, Technical Report DCC-2004-07, August 2004, DCC-FC& LIACC, Universidade do Porto.

N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.

LINKS

Table of n, a(n) for n=1..23.

Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"

N. Moreira and R. Reis, dcc-2004-07.ps

Index entries for linear recurrences with constant coefficients, signature (29,-343,2135,-7504,14756,-14832,5760).

FORMULA

For c=8, a(n)= (c^n)/c!+sum_{k=1..c-2}((k^n)/k!*(sum_{j=2..c-k}(((-1)^j)/j!))) or = sum_{k=1..c}(g(k, c)*k^n) where g(1, 1)=1 g(1, c)=g(1, c-1)+((-1)^(c-1))/(c-1)!, c>1 g(k, c)=g(k-1, c-1)/k, for c>1 and 2<= k<= c

G.f.: -x*(3641*x^6-6583*x^5+4566*x^4-1579*x^3+290*x^2-27*x+1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). [Colin Barker, Dec 05 2012]

CROSSREFS

Cf. A007051, A007581, A056272, A056273, A099262.

A row of the array in A278984.

Sequence in context: A108305 A229224 A276724 * A192865 A229225 A276725

Adjacent sequences:  A099260 A099261 A099262 * A099264 A099265 A099266

KEYWORD

easy,nonn

AUTHOR

Nelma Moreira (nam(AT)ncc.up.pt), Oct 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 18:39 EDT 2017. Contains 284273 sequences.