login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099255 G.f. (7+6*x-6*x^2-3*x^3)/((x^2+x-1)*(x^2-x-1)). 2

%I

%S 7,6,15,15,38,39,99,102,259,267,678,699,1775,1830,4647,4791,12166,

%T 12543,31851,32838,83387,85971,218310,225075,571543,589254,1496319,

%U 1542687,3917414,4038807,10255923,10573734,26850355,27682395,70295142,72473451

%N G.f. (7+6*x-6*x^2-3*x^3)/((x^2+x-1)*(x^2-x-1)).

%C One of two sequences involving the Lucas/Fibonacci numbers.

%C This sequence consists of pairs of numbers more or less close to each other with "jumps" in between pairs. "pos((Ex)^n)" sums up over all floretion basis vectors with positive coefficients for each n. The following relations appear to hold: a(2n) - (a(2n-1) + a(2n-2)) = 2*Luc(2n) a(2n+1) - a(2n) = Fib(2n), apart from initial term a(2n+1)/a(2n-1) -> 2 + golden ratio phi a(2n)/a(2n-2) -> 2 + golden ratio phi An identity: (1/2)a(n) - (1/2)A099256(n) = ((-1)^n)A000032(n)

%H Harvey P. Dale, <a href="/A099255/b099255.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-1).

%F a(n) = 2*pos((Ex)^n)

%F a(0) = 7, a(1) = 6, a(2) = a(3) = 15, a(n+4) = 3a(n+2) - a(n).

%F a(2n) = A022097(2n+1), a(2n+1) = A022086(2n+3).

%F a(n)=A061084(n+1)+A013655(n+2). [From _R. J. Mathar_, Nov 30 2008]

%t LinearRecurrence[{0,3,0,-1},{7,6,15,15},40] (* _Harvey P. Dale_, Dec 29 2012 *)

%o Floretion Algebra Multiplication Program, FAMP

%Y Cf. A099256, A000032.

%K nonn,easy

%O 0,1

%A _Creighton Dement_, Oct 09 2004

%E More terms from _Creighton Dement_, Apr 19 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:33 EST 2018. Contains 318049 sequences. (Running on oeis4.)