login
Square array read by antidiagonals with rows generated by 1/(1-x-x^(k+1)).
4

%I #12 Sep 01 2020 13:38:52

%S 1,1,2,1,1,4,1,1,2,8,1,1,1,3,16,1,1,1,2,5,32,1,1,1,1,3,8,64,1,1,1,1,2,

%T 4,13,128,1,1,1,1,1,3,6,21,256,1,1,1,1,1,2,4,9,34,512,1,1,1,1,1,1,3,5,

%U 13,55,1024,1,1,1,1,1,1,2,4,7,19,89,2048

%N Square array read by antidiagonals with rows generated by 1/(1-x-x^(k+1)).

%C Sections of rows are given by array A099233. Sums of antidiagonals yield A097939.

%C The triangle of diagonals terminated after reaching the repeating value is A329146. - _Andrey Zabolotskiy_, Sep 01 2020

%F Square array T(n, k) = Sum_{j=0..floor(n/(k+1))} binomial(n-k*j, j), n, k>=0.

%e Rows begin

%e 1, 2, 4, 8, 16, 32, 64, 128, 256, ... (A000079)

%e 1, 1, 2, 3, 5, 8, 13, 21, 34, ... (A000045)

%e 1, 1, 1, 2, 3, 4, 6, 9, 13, ... (A000930)

%e 1, 1, 1, 1, 2, 3, 4, 5, 7, ... (A003269)

%e 1, 1, 1, 1, 1, 2, 3, 4, 5, ... (A003520)

%K easy,nonn,tabl

%O 0,3

%A _Paul Barry_, Oct 08 2004