login
A variation on Flavius's sieve (A000960): Start with the natural numbers; at the k-th sieving step, remove every p-th term of the sequence remaining after the (k-1)-st sieving step, where p is the k-th prime; iterate.
7

%I #23 Aug 17 2017 01:56:07

%S 1,3,7,9,15,19,25,31,33,37,45,51,61,63,67,69,81,85,97,105,109,111,123,

%T 129,135,141,145,151,159,169,183,189,195,201,211,213,219,225,229,241,

%U 261,265,273,277,289,291,307,315,319,321,325,339,351,355,361,375,381

%N A variation on Flavius's sieve (A000960): Start with the natural numbers; at the k-th sieving step, remove every p-th term of the sequence remaining after the (k-1)-st sieving step, where p is the k-th prime; iterate.

%H Donovan Johnson, <a href="/A099204/b099204.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>

%e Start with

%e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... and delete every second term, giving

%e 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 ... and delete every 3rd term, giving

%e 1 3 7 9 13 15 19 21 25 27 ... and delete every 5th term, giving

%e 1 3 7 9 15 19 21 25 ... and delete every 7th term, giving

%e .... Continue forever and what's left is the sequence.

%p S[1]:={seq(i,i=1..390)}: for n from 2 to 390 do S[n]:=S[n-1] minus {seq(S[n-1][ithprime(n-1)*i],i=1..nops(S[n-1])/ithprime(n-1))} od: S[390]; # _Emeric Deutsch_, Nov 17 2004

%t Clear[l,ps];ps=Prime[Range[100]];l=Range[400];Do[l=Drop[l,{First[ps],-1, First[ps]}];ps=Rest[ps],{17}];l (* _Harvey P. Dale_, Sep 03 2011 *)

%o (Python)

%o import sympy

%o from sympy import prime

%o def a(n):

%o ..x = 1

%o ..lst = []

%o ..lst.extend(range(1, 1000))

%o ..while x <= n:

%o ....lst1 = []

%o ....for i in lst:

%o ......if (lst.index(i)+1)%prime(x)!=0:

%o ........lst1.append(i)

%o ....lst.clear()

%o ....lst.extend(lst1)

%o ....x += 1

%o ..return lst1[n-1]

%o n = 1

%o while n < 100:

%o ..print(a(n), end=', ')

%o ..n += 1

%o # _Derek Orr_, Jun 16 2014

%Y Cf. A000960, A099207, A099243.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Nov 16 2004

%E More terms from _Ray Chandler_, Nov 16 2004