login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099165 Palindromic in bases 10 and 32. 35
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 66, 99, 363, 858, 1441, 2882, 5445, 6886, 9449, 15951, 19891, 21012, 29692, 32223, 54945, 369963, 477774, 564465, 585585, 609906, 672276, 717717, 780087, 804408, 912219, 1251521, 2639362, 3825283 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..115, terms a(88)-a(111) from Ray Chandler.

MATHEMATICA

NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 32], AppendTo[l, a]], {n, 10000}]; l

PROG

(Python)

from gmpy2 import digits

def palQ(n, b): # check if n is a palindrome in base b

....s = digits(n, b)

....return s == s[::-1]

def palQgen10(l): # unordered generator of palindromes of length <= 2*l

....if l > 0:

........yield 0

........for x in range(1, 10**l):

............s = str(x)

............yield int(s+s[-2::-1])

............yield int(s+s[::-1])

A099165_list = sorted([n for n in palQgen10(6) if palQ(n, 32)])

# Chai Wah Wu, Nov 25 2014

CROSSREFS

Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855.

Sequence in context: A262069 A082208 A201061 * A239480 A117055 A117056

Adjacent sequences:  A099162 A099163 A099164 * A099166 A099167 A099168

KEYWORD

base,nonn

AUTHOR

Robert G. Wilson v, Sep 30 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 06:49 EST 2018. Contains 317162 sequences. (Running on oeis4.)