login
A099128
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5,6,7,8,9}.
9
1, 10, 1540, 1798940, 10981240985, 269343686017406, 21897427636095471460, 5097399860176368033512080, 3028721298862926523085514684685, 4186904993091626163441378607213473000, 12477686558866630120430437118910496237274716
OFFSET
0,2
COMMENTS
This is the number of possible votes of n referees judging n dancers by a mark between 0 and 9, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 10-set. - Andrew Howroyd, Jan 17 2020
LINKS
FORMULA
a(n) = binomial(binomial(n + 9, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020
PROG
(PARI) a(n)={binomial(binomial(n + 9, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sascha Kurz, Oct 11 2004
EXTENSIONS
a(0)=1 prepended and a(10) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved