login
A099127
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5,6,7,8}.
9
1, 9, 1035, 762355, 2531986380, 29653914688398, 1023687680214527328, 90954904732217610881940, 18709083803797153776767847375, 8183604949527627465377060678018870, 7099997495119970047949715137555520213198
OFFSET
0,2
COMMENTS
This is the number of possible votes of n referees judging n dancers by a mark between 0 and 8, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 9-set. - Andrew Howroyd, Jan 17 2020
LINKS
FORMULA
a(n) = binomial(binomial(n + 8, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020
PROG
(PARI) a(n)={binomial(binomial(n + 8, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sascha Kurz, Oct 11 2004
EXTENSIONS
a(0)=1 prepended and a(10) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved