login
A099126
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5,6,7}.
9
1, 8, 666, 295240, 503167995, 2629770332904, 35773664992355004, 1119582594247762626696, 73241437035618231162682185, 9277639855710782695858431981840, 2137918570337064383107929197622033920, 850936582591338109213109187016928388683280
OFFSET
0,2
COMMENTS
This is the number of possible votes of n referees judging n dancers by a mark between 0 and 7, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of an 8-set. - Andrew Howroyd, Jan 17 2020
LINKS
FORMULA
a(n) = binomial(binomial(n + 7, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020
PROG
(PARI) a(n)={binomial(binomial(n + 7, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sascha Kurz, Oct 11 2004
EXTENSIONS
a(0)=1 prepended and a(11) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved