

A099125


Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5,6}.


9



1, 7, 406, 102340, 83369265, 179224992408, 878487565272240, 8800321588119330984, 165564847349896309234920, 5470105884755875924791320090, 300550263698274781577833262263448, 26251679033395309424785182716562495776, 3509663406416043297299781592276029113718775
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is the number of possible votes of n referees judging n dancers by a mark between 0 and 6, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 7set.  Andrew Howroyd, Jan 17 2020


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..100


FORMULA

a(n) = binomial(binomial(n + 6, n) + n  1, n).  Andrew Howroyd, Jan 17 2020


PROG

(PARI) a(n)={binomial(binomial(n + 6, n) + n  1, n)} \\ Andrew Howroyd, Jan 17 2020


CROSSREFS

Column k=7 of A331436.
Cf. A099121, A099122, A099123, A099124, A099126, A099127, A099128.
Sequence in context: A225167 A160292 A215562 * A172894 A286393 A099742
Adjacent sequences: A099122 A099123 A099124 * A099126 A099127 A099128


KEYWORD

nonn


AUTHOR

Sascha Kurz, Sep 28 2004


EXTENSIONS

a(0)=1 prepended and a(11) and beyond from Andrew Howroyd, Jan 17 2020


STATUS

approved



