login
A099125
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5,6}.
9
1, 7, 406, 102340, 83369265, 179224992408, 878487565272240, 8800321588119330984, 165564847349896309234920, 5470105884755875924791320090, 300550263698274781577833262263448, 26251679033395309424785182716562495776, 3509663406416043297299781592276029113718775
OFFSET
0,2
COMMENTS
This is the number of possible votes of n referees judging n dancers by a mark between 0 and 6, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 7-set. - Andrew Howroyd, Jan 17 2020
LINKS
FORMULA
a(n) = binomial(binomial(n + 6, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020
PROG
(PARI) a(n)={binomial(binomial(n + 6, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sascha Kurz, Sep 28 2004
EXTENSIONS
a(0)=1 prepended and a(11) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved