login
A099124
Number of orbits of the wreath product of S_n with S_n on n X n matrices over {0,1,2,3,4,5}.
9
1, 6, 231, 30856, 11009376, 8809549056, 13949678575756, 39822612151165272, 190782296093487153627, 1449479533445348118223510, 16683660613067331275158983216, 280167196060745030529247396914000, 6651137552302201488023930244802896266
OFFSET
0,2
COMMENTS
This is the number of possible votes of n referees judging n dancers by a mark between 0 and 5, where the referees cannot be distinguished.
a(n) is the number of n element multisets of n element multisets of a 6-set. - Andrew Howroyd, Jan 17 2020
LINKS
FORMULA
a(n) = binomial(binomial(n + 5, n) + n - 1, n). - Andrew Howroyd, Jan 17 2020
MATHEMATICA
Table[Binomial[Binomial[n+5, n]+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Jul 26 2020 *)
PROG
(PARI) a(n)={binomial(binomial(n + 5, n) + n - 1, n)} \\ Andrew Howroyd, Jan 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sascha Kurz, Sep 28 2004
EXTENSIONS
a(0)=1 prepended and a(12) and beyond from Andrew Howroyd, Jan 17 2020
STATUS
approved