login
A099111
Expansion of 1 / ((1+x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
2
1, 13, 112, 798, 5103, 30471, 173734, 958936, 5170165, 27396369, 143295516, 742128114, 3814432987, 19490910907, 99140278258, 502476527532, 2539579950369, 12806979393285, 64472086878760, 324111808432390
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/360)*(6250*5^n - 9216*4^n + 3645*3^n - 320*2^n + (-1)^n).
MATHEMATICA
CoefficientList[Series[1/((1+x)(1-2x)(1-3x)(1-4x)(1-5x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{13, -57, 83, 34, -120}, {1, 13, 112, 798, 5103}, 20] (* Harvey P. Dale, Jan 17 2024 *)
PROG
(Magma) [(1/360)*(6250*5^n - 9216*4^n + 3645*3^n - 320*2^n + (-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
CROSSREFS
First differences are in A004058. Pairwise sums are in A025211.
Sequence in context: A299884 A299050 A299812 * A264451 A299687 A300319
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 28 2004
STATUS
approved