login
Riordan array (1, 3+3x).
2

%I #17 Sep 08 2022 08:45:15

%S 1,0,3,0,3,9,0,0,18,27,0,0,9,81,81,0,0,0,81,324,243,0,0,0,27,486,1215,

%T 729,0,0,0,0,324,2430,4374,2187,0,0,0,0,81,2430,10935,15309,6561,0,0,

%U 0,0,0,1215,14580,45927,52488,19683,0,0,0,0,0,243,10935,76545,183708,177147,59049

%N Riordan array (1, 3+3x).

%C Row sums are A030195. Diagonal sums are A099094.

%C The Riordan array (1,s+tx) defines T(n,k) = binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).

%C Modulo 2, this sequence gives A106344. - _Philippe Deléham_, Dec 18 2008

%F T(n,k) = binomial(k, n-k)*3^k. - corrected by _Michel Marcus_, Feb 21 2015

%F Columns have g.f. (3x+3x^3)^k.

%F T(n,k) = A026729(n,k)*3^k. - _Philippe Deléham_, Jul 29 2006

%e Rows begin:

%e 1;

%e 0, 3;

%e 0, 3, 9;

%e 0, 0, 18, 27;

%e 0, 0, 9, 81, 81;

%e 0, 0, 0, 81, 324, 243;

%e 0, 0, 0, 27, 486, 1215, 729;

%e ...

%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", ");); print(););} \\ _Michel Marcus_, Feb 21 2015

%o (Magma) [[Binomial(k,n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // _Vincenzo Librandi_, Feb 21 2015 /* as the triangle *)

%Y Cf. A038221.

%K easy,nonn,tabl

%O 0,3

%A _Paul Barry_, Sep 25 2004