The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers. 17
 1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k. Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005 LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (2.10) p. 6. F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112. D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002. E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202. R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6. A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002. L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239. FORMULA T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005 EXAMPLE Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ... Triangle begins 1; 0, 1; 0, -1, 1; 0, 2, -2, 1; 0, -5, 5, -3, 1; 0, 14, -14, 9, -4, 1; 0, -42, 42, -28, 14, -5, 1; 0, 132, -132, 90, -48, 20, -6, 1; 0, -429, 429, -297, 165, -75, 27, -7, 1; Production matrix is 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1 MATHEMATICA T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *) PROG (PARI) {T(n, k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))}; for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 31 2017 CROSSREFS The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term. Cf. A033184, A000108. Cf. A106566 (unsigned version), A059365 The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072. Diagonals give A000108 A000245 A002057 A000344 A003517 A000588 A003518 A003519 A001392, ... Sequence in context: A147746 A059365 A106566 * A205574 A049244 A110281 Adjacent sequences: A099036 A099037 A099038 * A099040 A099041 A099042 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Sep 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 18:58 EST 2022. Contains 358644 sequences. (Running on oeis4.)