The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099014 a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2). 2
 0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,3)-element of A^n. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..173 from Vincenzo Librandi) Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1). FORMULA G.f.: x*(1+2*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4) = x*(1+2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)). a(n) = Sum_{k=0..n} (-1)^(k+1)*Fib(k)*(0^(n-k) + 6*A001076(n-k)). a(n) = ((-1)^n*Fib(n) + 3*Fib(3*n))/5. - Ehren Metcalfe, May 21 2016 MATHEMATICA CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *) PROG (MAGMA) [Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011 (PARI) a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011 CROSSREFS Cf. A000045, A056570, A066258, A066259. Sequence in context: A045499 A145932 A026661 * A219672 A011966 A271096 Adjacent sequences:  A099011 A099012 A099013 * A099015 A099016 A099017 KEYWORD nonn,easy AUTHOR Paul Barry, Sep 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)