%I #8 May 01 2013 21:11:52
%S 53955,59994,61974,62964,63954,71973,74943,75933,82962,83952,420876,
%T 642654,750843,840852,851742,860832,862632,7509843,7519743,7619733,
%U 8429652,8439552,8649432,8719722,9529641,43208766,64308654,64326654
%N Consider the Kaprekar map n->K(n) defined in A151949. Sequence gives numbers belonging to cycles of length greater than 1.
%C 86526432, 64308654, 83208762 form a cycle of length three and 86308632, 86326632, 64326654, 43208766, 85317642, 75308643, 84308652 form a cycle of length seven.
%H Joseph Myers, <a href="/A099010/b099010.txt">Table of n, a(n) for n=1..28910</a> [From _Joseph Myers_, Aug 22 2009]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KaprekarRoutine.html">Kaprekar Routine</a>
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%e 53955 and 59994 form a cycle of length 2 and hence are terms: 53955 -> 95553 - 35559 = 59994 -> 99954 - 45999 = 53955.
%Y Cf. A151949, A090429, A069746, A099009.
%Y Cf. A164715 (corresponding cycle lengths) [From _Joseph Myers_, Aug 24 2009]
%Y In other bases: Empty (base 2), A165000 (base 3), A165019 (base 4), A165039 (base 5), A165058 (base 6), A165078 (base 7), A165097 (base 8), A165117 (base 9). [From _Joseph Myers_, Sep 05 2009]
%K nonn,base
%O 1,1
%A _Klaus Brockhaus_, Sep 22 2004
%E Definition revised ny _N. J. A. Sloane_, Aug 18 2009
%E Extended by _Joseph Myers_, Aug 22 2009