login
A098872
Least k such that 2*((6*n)^k) + 1 is prime.
0
1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 2, 2, 1, 4, 1, 1, 2, 5, 1, 1, 4, 2, 1, 5, 3, 1, 2, 1, 1, 8, 1, 3, 1, 1, 1, 1, 66, 1, 6, 2, 3, 3, 5, 2, 1, 4, 7, 1, 9, 1, 1, 3, 6, 2, 1, 1, 96, 4, 1, 2, 1, 62, 1, 1, 9, 5, 159, 4, 1, 7, 1, 4, 1, 8, 2, 2, 2, 1, 2, 8, 2, 2, 1, 1, 1, 1, 54, 8, 1, 5, 1, 16, 1, 1, 2, 1, 7, 2, 4, 1, 1
OFFSET
1,2
EXAMPLE
2*((6*1)^1) + 1 = 13 prime, so a(1)=1
2*((6*2)^1) + 1 = 25 = 5^2
2*((6*2)^2) + 1 = 289 = 17^2
2*((6*2)^3) + 1 = 3457 prime, so a(2)=3
MATHEMATICA
lk[n_]:=Module[{k=1}, While[!PrimeQ[2(6n)^k+1], k++]; k]; Array[lk, 110] (* Harvey P. Dale, May 16 2012 *)
CROSSREFS
Sequence in context: A328569 A016569 A072801 * A349473 A167366 A139436
KEYWORD
nonn
AUTHOR
Pierre CAMI, Oct 13 2004
EXTENSIONS
Extended by R. J. Mathar, Nov 13 2009
STATUS
approved