login
A098866
Decimal expansion of the sum_{n>0} of A000040(n)/exp(n), where A000040(k) gives the k-th prime number and exp(k) is the natural exponential of k.
0
1, 6, 5, 2, 1, 7, 9, 3, 9, 2, 5, 6, 1, 0, 5, 4, 9, 5, 5, 8, 8, 8, 2, 2, 0, 7, 6, 1, 4, 5, 7, 6, 5, 1, 2, 2, 4, 6, 6, 4, 7, 4, 1, 7, 0, 3, 3, 4, 9, 4, 1, 1, 7, 8, 4, 4, 9, 7, 2, 5, 9, 3, 3, 6, 6, 2, 9, 6, 8, 5, 9, 4, 7, 4, 8, 3, 6, 9, 1, 6, 3, 5, 2, 0, 5, 2, 5, 3, 9, 1, 2, 6, 9, 4, 9, 7, 9, 8, 3, 1, 3, 9, 2, 8, 5
OFFSET
1,2
COMMENTS
Relates the growth of the n-th-prime function A000040(n) to the growth of the natural exponential exp(n)=e^n where e is Euler's number (A001113).
EXAMPLE
1.65217939256105495588822076145765122466474170334941178449725933662968594748369163520525391269497983139285...
MAPLE
f:=x->sum(ithprime(n)/exp(n), n=1..x); evalf[110](f(1500)); evalf[110](f(4000));
MATHEMATICA
RealDigits[Total[Table[Prime[k]/Exp[k], {k, 2000}]], 10, 110][[1]] (* Harvey P. Dale, Dec 18 2013 *)
CROSSREFS
Sequence in context: A177938 A374529 A112282 * A144689 A221215 A199180
KEYWORD
cons,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004
STATUS
approved