

A098816


a(1)=0, a(2)=1, a(n)=ceiling((3/2)*a(n1)a(n2)).


0



0, 1, 2, 2, 0, 3, 5, 3, 3, 0, 5, 8, 5, 5, 0, 8, 12, 6, 9, 5, 6, 2, 6, 6, 0, 9, 14, 8, 9, 2, 11, 14, 5, 14, 14, 0, 21, 32, 17, 23, 9, 21, 18, 5, 20, 23, 5, 27, 33, 9, 36, 41, 8, 50, 63, 20, 65, 68, 5, 95, 135, 60, 113, 80, 50, 45, 8, 56, 72, 24, 72, 72, 0, 108, 162, 81, 122, 62, 90, 42, 72, 45, 41, 6, 53, 71, 27, 66, 59, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Sequence becomes periodic with period length 193. For which values of lambda does the sequence (a(n)) defined by a(1)=0, a(2)=1, a(n)=ceil(lambda*a(n1)a(n2)) becomes ultimately periodic?


LINKS

Table of n, a(n) for n=1..90.


FORMULA

For n>=19 a(n+193)=a(n)


MATHEMATICA

RecurrenceTable[{a[1]==0, a[2]==1, a[n]==Ceiling[3/2 Abs[a[n1]a[n2]]]}, a, {n, 90}] (* Harvey P. Dale, Mar 14 2015 *)


CROSSREFS

Sequence in context: A188333 A283269 A201947 * A214639 A319495 A216973
Adjacent sequences: A098813 A098814 A098815 * A098817 A098818 A098819


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Nov 02 2004


EXTENSIONS

Corrected and extended by Harvey P. Dale, Mar 14 2015


STATUS

approved



