

A098747


Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UDU's at low level.


1



1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 24, 11, 5, 1, 1, 75, 35, 14, 6, 1, 1, 243, 113, 47, 17, 7, 1, 1, 808, 376, 156, 60, 20, 8, 1, 1, 2742, 1276, 532, 204, 74, 23, 9, 1, 1, 9458, 4402, 1840, 712, 257, 89, 26, 10, 1, 1, 33062, 15390, 6448, 2507, 917, 315, 105, 29, 11, 1, 1, 116868
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

T(n,0) = A000958(n1).  Emeric Deutsch, Dec 23 2006


LINKS

Table of n, a(n) for n=1..67.
Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177186.


FORMULA

See Mathematica line.
G.f.=zC/(1+ztzzC), where C=(1sqrt(14z))/(2z) is the Catalan function.  Emeric Deutsch, Dec 23 2006
With offset 0 (0<=k<=n), T(n,k)=A065600(n,k)+A065600(n+1,k)A065600(n,k1).  Philippe Deléham, Apr 01 2007


EXAMPLE

Triangle begins:
1
1 1
3 1 1
8 4 1 1
24 11 5 1 1
75 35 14 6 1 1
T(4,2)=1 because we have UDUDUUDD.


MAPLE

c:=(1sqrt(14*z))/2/z: G:=z*c/(1t*z+zz*c): Gser:=simplify(series(G, z=0, 15)): for n from 1 to 13 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 1 to 12 do seq(coeff(P[n], t, k), k=0..n1) od; # yields sequence in triangular form  Emeric Deutsch, Dec 23 2006


MATHEMATICA

u[n_, k_, i_]:=(2i+1)/(nk)Binomial[k+i, i]Binomial[2n2k2i2, nk1] u[n_, k_]/; k<=n1 := Sum[u[n, k, i], {i, 0, nk1}] Table[u[n, k], {n, 10}, {k, 0, n1}] (* u[n, k, i] is the number of Dyck npaths with k low UDUs and k+i+1 returns altogether. For example, with n=4, k=1 and i=1, u[n, k, i] counts UDUUDDUD, UUDDUDUD because each has size n=4, k=1 low UDUs and k+i+1=3 returns to ground level. *) (* David Callan, Nov 03 2005 *)


CROSSREFS

Cf. A091869, A092107.
Cf. A000958.
Sequence in context: A143953 A114276 A152879 * A122897 A117425 A287215
Adjacent sequences: A098744 A098745 A098746 * A098748 A098749 A098750


KEYWORD

nonn,tabl


AUTHOR

N. J. A. Sloane, Oct 30 2004


STATUS

approved



