login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098746 Number of permutations of [1..n] which avoid 4231 and 42513. 5

%I

%S 1,1,2,6,23,102,495,2549,13682,75714,428882,2474573,14492346,85926361,

%T 514763279,3111119358,18946375767,116147683902,716179441293,

%U 4438862153246,27638747494178,172805469880497,1084462349973559,6828717036765622,43132158190994223,273204023401012901

%N Number of permutations of [1..n] which avoid 4231 and 42513.

%C (a(n))_{n>=1} is the INVERT transform of (u(n))_{n>=1}:=(1,1,3,12,55,273,...), the ternary numbers A001764. - David Callan Nov 21 2011

%C a(n) = number of Dyck paths of semilength 2n for which all descents are of even length (counted by A001764) with no valley vertices at height 1. For example, a(2)=2 counts UUUUDDDD, UUDDUUDD. - David Callan, Nov 21 2011

%D M. H. Albert et al., Restricted permutations and queue jumping, Discrete Math., 287 (2004), 129-133.

%F G.f.: 1+Sum( t^n * Sum( (n-l)*binomial(2*l+n, l)/(2*l+n), l=0..n ), n=1..oo).

%F G.f.: sqrt(3)/(sqrt(3)-2*sqrt(x)*sin(asin(3*sqrt(3x)/2)/3)); - _Paul Barry_, Dec 15 2006

%F Let M = the production matrix:

%F 1, 1

%F 1, 2, 1

%F 1, 3, 2, 1

%F 1, 4, 3, 2, 1

%F 1, 5, 4, 3, 2, 1

%F ...

%F a(n) = upper left term in M^n, with sum of top row terms = a(n+1). Example: top row of M^3 = (6, 11, 5, 1), where a(3) = 6 and a(4) = 23 = (6 + 11 + 5 + 1). - Gary W. Adamson, Jul 07 2011

%F a(n) ~ 3^(3*n+3/2) / (49 * sqrt(Pi) * 4^n * n^(3/2)). - _Vaclav Kotesovec_, Mar 17 2014

%F Conjecture: 2*(2*n-1)*(n-1)*a(n) +3*(11*n^2-67*n+76)*a(n-1) +3*(-155*n^2+931*n-1356)*a(n-2) +(469*n^2-2799*n+4070)*a(n-3) -48*(3*n-8)*(3*n-10)*a(n-4)=0. - _R. J. Mathar_, May 30 2014

%p 1+add( t^n * add( (n-l)*binomial(2*l+n,l)/(2*l+n), l=0..n ), n=1..30);

%t Flatten[{1,Table[Sum[(n-j)*Binomial[2*j+n,j]/(2*j+n),{j,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 17 2014 *)

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Oct 30 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 15:01 EST 2016. Contains 278678 sequences.