This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098695 a(n) = 2^(n(n-1)/2) * Prod_{k=1..n} k!. 3
 1, 1, 4, 96, 18432, 35389440, 815372697600, 263006617337856000, 1357366631815981301760000, 126095668058466123464363212800000, 234278891648287676839670388023623680000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals the absolute values of the row sums of A156921. - Johannes W. Meijer, Feb 20 2009 LINKS C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp. FORMULA a(n) = 2^(n(n-1)/2) * Product_{k=1..n} k!. a(n) = A006125(n) * A000178(n). a(n) ~ 2^(n^2/2+1/2)*exp(-3*n^2/4-n+1/12)*n^(n^2/2+n+5/12)*Pi^(n/2+1/2)/A, where A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Dec 11 2016 MAPLE A098695 := proc(n): 2^(n*(n-1)/2) * product(k!, k=1..n) end: seq(A098695(n), n=0..10);  # Johannes W. Meijer, Nov 22 2012 PROG (PARI) a(n) = 2^(n*(n-1)/2) * prod(k=1, n, k!); \\ Michel Marcus, Dec 11 2016 CROSSREFS Sequence in context: A203517 A146514 A181335 * A307934 A059201 A323818 Adjacent sequences:  A098692 A098693 A098694 * A098696 A098697 A098698 KEYWORD nonn AUTHOR Ralf Stephan, Sep 22 2004 EXTENSIONS Added a(0)=1, offset changed and edited by Johannes W. Meijer, Feb 23 2009, Nov 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 07:03 EDT 2019. Contains 328292 sequences. (Running on oeis4.)