login
Decimal expansion of Integral_{x=0..infinity} x/(x^x) dx.
1

%I #8 Mar 09 2014 13:47:02

%S 1,7,5,1,8,2,8,8,8,4,3,1,3,8,4,1,7,8,0,4,1,3,3,2,7,6,3,7,6,4,1,6,7,6,

%T 3,4,8,1,2,2,4,1,2,1,6,1,2,9,4,5,2,6,3,6,0,7,4,1,0,7,0,4,5,1,4,9,9,8,

%U 3,8,3,9,6,5,9,2,3,7,5,5,1,0,3,3,6,9,1,5,1,0,3,9,4,8,6,8,4,3,1,5,6,6,3,4,1

%N Decimal expansion of Integral_{x=0..infinity} x/(x^x) dx.

%C Decimal expansion of G(b)-G(a), where b->infinity, a->0+ and G(x) is the antiderivative of x/(x^x).

%e 1.75182888431384178041332763764167634812241216129452636074107045149...

%p int(x/(x^x),x=0..infinity);

%t $MaxPrecision = 10^7; RealDigits[ NIntegrate[x/x^x, {x, 0, Infinity}, WorkingPrecision -> 256, PrecisionGoal -> 128, MaxRecursion -> 16], 10, 111][[1]] (* _Robert G. Wilson v_, Nov 02 2004 *)

%t RealDigits[N[Integrate[x/x^x,{x,0,\[Infinity]}],120]][[1]] (* _Harvey P. Dale_, Dec 20 2012 *)

%K cons,nonn

%O 1,2

%A Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004

%E More terms from _Robert G. Wilson v_, Nov 03 2004