

A098684


Numbers n such that pi(n) = P(d_1!!)*P(d_2!!)*...*P(d_k!!) where d_1 d_2 ... d_k is the decimal expansion of n and P(i) is ith prime.


3



10, 30, 123, 41402, 1400523, 3173000, 3173001, 3173010, 3173011, 351226103, 351226113, 351226130, 351226131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are no further terms up to 35000000.
From Farideh Firoozbakht, Jun 01 2009: (Start)
If 10*n is in the sequence and 10*n+1 is composite then 10*n+1 is also in the sequence.
There is no further term up to 1.5*10^10. (End)
There are no other terms less than 10^15.  Chai Wah Wu, Mar 06 2019


LINKS

Table of n, a(n) for n=1..13.


EXAMPLE

3173011 is in the sequence because pi(3173011)=P(3!!)*P(1!!)*P(7!!)*P(0!!)*P(1!!)*P(1!!).


MATHEMATICA

Do[d=IntegerDigits[n]; k=Length[d]; If[PrimePi[n]== Product[Prime[d[[j]]!! ], {j, k}], Print[n]], {n, 35000000}]


CROSSREFS

Cf. A000040, A098683, A098685, A098686.
Sequence in context: A185829 A301664 A259136 * A268117 A256879 A064012
Adjacent sequences: A098681 A098682 A098683 * A098685 A098686 A098687


KEYWORD

base,more,nonn


AUTHOR

Farideh Firoozbakht, Sep 24 2004


EXTENSIONS

More terms from Farideh Firoozbakht, Jun 01 2009


STATUS

approved



