login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098665 Sum(k=0..n, binomial(n,k) * binomial(n+1,k+1) * 4^k). 2
1, 6, 43, 332, 2661, 21810, 181455, 1526040, 12939145, 110413406, 947052723, 8157680228, 70518067309, 611426078346, 5315138311383, 46308989294640, 404274406256145, 3535479068797110, 30966952059306555, 271616893912241532, 2385412594943633781, 20973327081776664546 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fifth binomial transform of A098664.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

G.f.: ((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2)).

E.g.f.: exp(5x)*(BesselI(0, 4x)+BesselI(1, 4x)/2).

Recurrence: (n+1)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - 9*(n-1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012

a(n) ~ 9^(n+1)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012

MATHEMATICA

Table[SeriesCoefficient[((1+3*x)-Sqrt[1-10*x+9*x^2])/(8*x*Sqrt[1-10*x+9*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

PROG

(PARI) x='x+O('x^66); Vec(((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2))) \\ Joerg Arndt, May 12 2013

CROSSREFS

Sequence in context: A091129 A091128 A025594 * A153397 A005786 A071541

Adjacent sequences:  A098662 A098663 A098664 * A098666 A098667 A098668

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 20 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 07:38 EST 2016. Contains 278761 sequences.