login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098665 Sum(k=0..n, binomial(n,k) * binomial(n+1,k+1) * 4^k). 2
1, 6, 43, 332, 2661, 21810, 181455, 1526040, 12939145, 110413406, 947052723, 8157680228, 70518067309, 611426078346, 5315138311383, 46308989294640, 404274406256145, 3535479068797110, 30966952059306555, 271616893912241532, 2385412594943633781, 20973327081776664546 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fifth binomial transform of A098664.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

G.f.: ((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2)).

E.g.f.: exp(5x)*(BesselI(0, 4x)+BesselI(1, 4x)/2).

Recurrence: (n+1)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - 9*(n-1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012

a(n) ~ 9^(n+1)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012

MATHEMATICA

Table[SeriesCoefficient[((1+3*x)-Sqrt[1-10*x+9*x^2])/(8*x*Sqrt[1-10*x+9*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

PROG

(PARI) x='x+O('x^66); Vec(((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2))) \\ Joerg Arndt, May 12 2013

CROSSREFS

Sequence in context: A091129 A091128 A025594 * A153397 A005786 A071541

Adjacent sequences:  A098662 A098663 A098664 * A098666 A098667 A098668

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 20 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 17:37 EST 2014. Contains 252238 sequences.