This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098665 Sum(k=0..n, binomial(n,k) * binomial(n+1,k+1) * 4^k). 2
 1, 6, 43, 332, 2661, 21810, 181455, 1526040, 12939145, 110413406, 947052723, 8157680228, 70518067309, 611426078346, 5315138311383, 46308989294640, 404274406256145, 3535479068797110, 30966952059306555, 271616893912241532, 2385412594943633781, 20973327081776664546 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fifth binomial transform of A098664. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA G.f.: ((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2)). E.g.f.: exp(5x)*(BesselI(0, 4x)+BesselI(1, 4x)/2). Recurrence: (n+1)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - 9*(n-1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012 a(n) ~ 9^(n+1)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012 MATHEMATICA Table[SeriesCoefficient[((1+3*x)-Sqrt[1-10*x+9*x^2])/(8*x*Sqrt[1-10*x+9*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *) PROG (PARI) x='x+O('x^66); Vec(((1+3*x)-sqrt(1-10*x+9*x^2))/(8*x*sqrt(1-10*x+9*x^2))) \\ Joerg Arndt, May 12 2013 CROSSREFS Sequence in context: A091129 A091128 A025594 * A153397 A005786 A071541 Adjacent sequences:  A098662 A098663 A098664 * A098666 A098667 A098668 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 20 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.