login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098659 Expansion of 1/sqrt((1-7*x)^2-24*x^2). 1
1, 7, 61, 595, 6145, 65527, 712909, 7863667, 87615745, 983726695, 11112210781, 126142119187, 1437751935361, 16443380994775, 188609259215725, 2168833084841395, 24994269200292865, 288596644195946695, 3337978523215692925, 38666734085509918675 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Rob Noble, Asymptotics of a family of binomial sums, J. Number Theory 130 (2010), no. 11, 2561-2585.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

G.f.: 1/sqrt(1-14*x+25*x^2).

E.g.f.: exp(7*x)*BesselI(0, sqrt(24)*x) = exp(7*x)*BesselI(0, 2*sqrt(6)*x).

a(n) = Sum_{k=0..n} C(n, k)^2*6^k.

a(n) = [x^n] (1+7*x+6*x^2)^n.

From Vaclav Kotesovec, Sep 15 2012: (Start)

General recurrence for Sum_{k=0..n} C(n,k)^2*x^k (this is case x=6): (n+2)*a(n+2)-(x+1)*(2*n+3)*a(n+1)+(x-1)^2*(n+1)*a(n)=0.

Asymptotic (Rob Noble, 2010): a(n) ~ (1+sqrt(x))^(2*n+1)/(2*x^(1/4)*sqrt(Pi*n)), this is case x=6.

(End)

MATHEMATICA

Table[Sum[Binomial[n, k]^2*6^k, {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Sep 15 2012 *)

PROG

(PARI) x='x+O('x^66); Vec(1/sqrt(1-14*x+25*x^2)) \\ Joerg Arndt, May 12 2013

CROSSREFS

Cf. A000984, A001850, A069835, A084771, A084772.

Sequence in context: A066443 A108448 A218473 * A269731 A199686 A113718

Adjacent sequences:  A098656 A098657 A098658 * A098660 A098661 A098662

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 20 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.