login
A098655
Trace sequence of 3 X 3 symmetric Krawtchouk matrix.
2
3, 2, 20, 8, 144, 32, 1088, 128, 8448, 512, 66560, 2048, 528384, 8192, 4210688, 32768, 33619968, 131072, 268697600, 524288, 2148532224, 2097152, 17184063488, 8388608, 137455730688, 33554432, 1099578736640, 134217728, 8796361457664
OFFSET
0,1
COMMENTS
Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) = trace(A^n).
LINKS
P. Feinsilver and J. Kocik, Krawtchouk Polynomials and Krawtchouk Matrices, Contemporary Mathematics, 287 2001, pp. 83-96.
Philip Feinsilver, Jerzy Kocik, Krawtchouk matrices from classical and quantum random walks, arXiv:quant-ph/0702173, 2007.
FORMULA
G.f.: (3 - 4*x - 8*x^2)/((1-2*x)*(1-8*x^2)).
a(n) = 2^n + (2*sqrt(2))^n + (-2*sqrt(2))^n.
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
E.g.f.: exp(2*x) + 2*cosh(2*sqrt(2)*x). - Stefano Spezia, Sep 08 2019
CROSSREFS
Sequence in context: A154262 A367548 A154261 * A065038 A123225 A009028
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 19 2004
STATUS
approved