The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098618 Products of A007482 and Catalan numbers: a(n) = A007482(n)*A000108(n). 3
 1, 3, 22, 195, 1946, 20790, 232716, 2693691, 31979090, 387243714, 4764470932, 59391201870, 748472730628, 9520446996300, 122067269204760, 1575965219205195, 20470515781159170, 267325017886787850 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Radius of convergence: r = (sqrt(17)-3)/16; A(r) = sqrt(2+6/sqrt(17)). Recurrence of A007482 is A007482(n) = 3*A007482(n-1) + 2*A007482(n-2). More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x. LINKS FORMULA G.f.: A(x) = sqrt((1-6*x - sqrt(1-12*x-32*x^2))/34 )/x. n*(n+1)*a(n) -6*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2018 EXAMPLE Begins: {1*1, 3*1, 11*2, 39*5, 139*14, 495*42, 1763*132, 6279*429,...}. PROG (PARI) {a(n)=binomial(2*n, n)/(n+1)*((3+sqrt(17))^(n+1)-(3-sqrt(17))^(n+1))/2^(n+1)/sqrt(17)} CROSSREFS Cf. A007482, A000108, A098614, A098616, A098619. Sequence in context: A046743 A121952 A250888 * A207326 A006783 A330668 Adjacent sequences:  A098615 A098616 A098617 * A098619 A098620 A098621 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 02:18 EST 2020. Contains 338921 sequences. (Running on oeis4.)