login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098617 G.f. A(x) satisfies: A(x*G(x)) = G(x), where G(x) is the g.f. for A098616(n) = Pell(n+1)*Catalan(n). 6
1, 2, 6, 16, 46, 128, 364, 1024, 2902, 8192, 23188, 65536, 185420, 524288, 1483096, 4194304, 11863910, 33554432, 94908420, 268435456, 759257636, 2147483648, 6074027496, 17179869184, 48592102396, 137438953472, 388736403144 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

G.f. satisfies: A(x) = x/Series_Reversion(x*G(x)), where G(x) is the g.f. for A098616 = {1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, ...}.

Hankel transform is 2^n. - Paul Barry Jan 19 2011

LINKS

Fung Lam, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: (sqrt(1-4*x^2) + 2*x)/(1-8*x^2).

a(2*n+1) = 2*8^n.

a(n) = sum{k=0..floor((n+1)/2), (C(n,k)-C(n,k-1))*A000129(n-2k+1)}. - Paul Barry Jan 19 2011

a(n) = 2^n*sum(j=0..n/2, binomial((n-1)/2,j)). - Vladimir Kruchinin, May 18 2011

a(n) = Sum_{k, 0<=k<=n} A201093(n,k)*2^k. - Philippe Deléham, Nov 27 2011

G.f.: 1/(1-2x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-... (continued fraction). - Philippe Deléham, Nov 27 2011

Recurrence: (n+6)*a(n)=256*(n+1)*a(n-6)-128*(n+3)*a(n-4)+4*(5*n+23)*a(n-2), for even n. - Fung Lam, Mar 31 2014

Recurrence: n*a(n) = 12*(n-1)*a(n-2) - 32*(n-3)*a(n-4). - Vaclav Kotesovec, Mar 31 2014

Asymptotic approximation: a(n) ~ (4/sqrt(2))^n/sqrt(2)+2^(n+1)/sqrt(2*Pi*n^3), for even n. - Fung Lam, Mar 31 2014

0 = a(n) * (+64*a(n+1) - 8*a(n+3)) + a(n+2) * (-8*a(n+1) + a(n+3)) if n>=0. - Michael Somos, Apr 07 2014

EXAMPLE

G.f. = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 128*x^5 + 364*x^6 + 1024*x^7 + ...

MATHEMATICA

CoefficientList[Series[(Sqrt[1-4*x^2] + 2*x)/(1-8*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 31 2014 *)

PROG

(PARI) a(n)=polcoeff((sqrt(1-4*x^2+x^2*O(x^n))+2*x)/(1-8*x^2), n)

(Maxima)

a(n):=2^n*sum(binomial((n-1)/2, j), j, 0, n/2); (* Vladimir Kruchinin, May 18 2011

CROSSREFS

Cf. A098616, A098615, A000129, A000108.

Sequence in context: A148440 A148441 A307606 * A291036 A092687 A094039

Adjacent sequences:  A098614 A098615 A098616 * A098618 A098619 A098620

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 14 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:23 EST 2019. Contains 329909 sequences. (Running on oeis4.)