%I #36 Oct 27 2024 16:36:32
%S 10,7,7,6,5,6,5,6,5,5,4,6,5,4,6,5,5,2,5,5,5,6,4,4,4,5,3,6,4,4,4,4,4,5,
%T 5,4,6,3,3,4,5,4,4,6,2,3,3,5,4,7,2,5,4,6,3,4,4,3,4,4,3,2,7,3,3,3,5,5,
%U 3,5,3,5,2,3,4,4,5,3,4,7,3,4,3,1,5,3,3,3,4,7,5,4,3,5,3,4,4,3,4,2,4,3,5,2,2,3
%N Number of primes between n*30 and (n+1)*30.
%C Number of nonzero bits in A098591(n).
%C The number a(n) is < 8 except for n=0. - _Pierre CAMI_, Jun 02 2009
%C For references to positions where a(n) = 7 and related explanation, see A100418. - _Peter Munn_, Sep 06 2023
%H Dennis Martin, <a href="/A005867/a005867.pdf">Proofs Regarding Primorial Patterns</a> [Cached copy, with permission of the author].
%H Hugo Pfoertner, <a href="http://www.randomwalk.de/scimath/primes30.pdf">Patterns count table</a>.
%e a(1)=7 because there are 7 primes in the interval (30,60): 31,37,41,43,47,53,59.
%e a(26)=3 because the interval of length 30 following 26*30=780 contains 3 primes: 787, 797 and 809.
%o (FORTRAN) See links given in A098591.
%o (PARI) a(n) = primepi(30*(n+1)) - primepi(30*n); \\ _Michel Marcus_, Apr 04 2020
%o (Python)
%o from sympy import primerange
%o def a(n): return len(list(primerange(n*30, (n+1)*30)))
%o print([a(n) for n in range(106)]) # _Michael S. Branicky_, Oct 07 2021
%Y Cf. A000040 (prime numbers), A098591 (packed representation of the primes mod 30), A100418, A185641.
%Y Cf. A038822, A094892.
%K easy,nonn,changed
%O 0,1
%A _Hugo Pfoertner_, Sep 16 2004
%E Edited by _N. J. A. Sloane_, Jun 12 2009 at the suggestion of _R. J. Mathar_