login
A098582
Expansion of (1+2*x+4*x^2+8*x^3)/(1-x-16*x^5).
2
1, 3, 7, 15, 15, 31, 79, 191, 431, 671, 1167, 2431, 5487, 12383, 23119, 41791, 80687, 168479, 366607, 736511, 1405167, 2696159, 5391823, 11257535, 23041711, 45524383, 88662927, 174932095, 355052655, 723720031, 1452110159, 2870716991
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 16*a(n-5).
a(n) = Sum_{k=0..n} binomial(n-k, floor(k/4)) * 2^k.
MATHEMATICA
CoefficientList[Series[(1+2*x+4*x^2+8*x^3)/(1-x-16*x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 16}, {1, 3, 7, 15, 15}, 50] (* G. C. Greubel, Feb 03 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+2*x+4*x^2+8*x^3)/(1-x-16*x^5)) \\ G. C. Greubel, Feb 03 2018
(Magma) I:=[1, 3, 7, 15, 15]; [n le 5 select I[n] else Self(n-1) +16*Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
CROSSREFS
Sequence in context: A117589 A295930 A143703 * A235698 A089432 A111294
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 16 2004
STATUS
approved