login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098579 Expansion of sqrt(1-8*x). 3
1, -4, -8, -32, -160, -896, -5376, -33792, -219648, -1464320, -9957376, -68796416, -481574912, -3408068608, -24343347200, -175272099840, -1270722723840, -9268801044480, -67971207659520, -500840477491200, -3706219533434880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If A(x) is the g.f. and B(x) := A(-x), then A(x) * B(x) = A(8*x^2), B(x)^2 - A(x)^2 = 16*x, B(x)^2 + A(x)^2 = 2. Also, if U = x*A(x^2/4), T = x*A(-x^2/4), then (T^2 + U^2)^2 = T^2 - U^2 is a parametrization of the lemniscate of Bernoulli. - Michael Somos, Aug 22 2019

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 4*x*C(2*x)-1, where C(x) is the g.f. for the Catalan numbers A000108; a(0)=1, a(n)=-2^(n+1)*binomial(2(n-1), n-1)/n, n>0.

D-finite with recurrence: n*a(n) +4*(3-2*n)*a(n-1)=0. - R. J. Mathar, Nov 09 2012

0 = a(n)*(+64*a(n+1) -20*a(n+2)) +a(n+1)*(+4*a(n+1) +a(n+2)) for all n in Z. - Michael Somos, Aug 22 2019

EXAMPLE

G.f. = 1 - 4*x - 8*x^2 - 32*x^3 - 160*x^4 - 896*x^5 - 5376*x^6 + ... - Michael Somos, Aug 22 2019

MATHEMATICA

CoefficientList[Series[Sqrt[1-8x], {x, 0, 30}], x] (* or *) Table[(8^(x-1) Pochhammer[-(1/2), x-1])/Pochhammer[1, x-1], {x, 30}] (* Harvey P. Dale, Jan 24 2015 *)

a[ n_] := If[ n < 1, Boole[n == 0], -CatalanNumber[n - 1] 2^(n + 1)]; (* Michael Somos, Aug 22 2019 *)

PROG

(PARI) x='x+O('x^30); Vec(sqrt(1-8*x)) \\ G. C. Greubel, Feb 03 2018

(MAGMA) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!(Sqrt(1-8*x))) // G. C. Greubel, Feb 03 2018

CROSSREFS

Cf. A052701, A002420.

Sequence in context: A247938 A072868 A075398 * A261196 A222537 A208924

Adjacent sequences:  A098576 A098577 A098578 * A098580 A098581 A098582

KEYWORD

easy,sign

AUTHOR

Paul Barry, Sep 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 09:46 EST 2020. Contains 332277 sequences. (Running on oeis4.)