login
A098566
Smallest prime P such that P# - Mersenne-prime(n) is prime.
2
3, 5, 7, 7, 13, 17, 19, 29, 53, 157, 79, 101, 613, 641, 2633, 2161, 1697, 2293, 12251, 4283, 7573, 7243, 9433, 22381, 29411, 16333
OFFSET
1,1
MATHEMATICA
mexp = {the list in A000043}; Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1}, While[Primorial[k] < 2^mexp[[n]] || !PrimeQ[ Primorial[k] - 2^mexp[[n]] + 1], k++ ]; Prime[k]]; Table[ f[n], {n, 15}] (* Robert G. Wilson v, Sep 28 2004 *)
CROSSREFS
Cf. A098567.
Sequence in context: A172365 A297709 A242999 * A006540 A099726 A327096
KEYWORD
more,nonn
AUTHOR
Pierre CAMI, Sep 15 2004
EXTENSIONS
Corrected by Robert G. Wilson v, Sep 28 2004
a(19)-a(26) from Donovan Johnson, Feb 22 2008
STATUS
approved