This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098562 Primes that are the sum of the squares of the first n primes for some n. 10
 13, 20477, 75997, 239087, 2210983, 3579761, 29194283, 40002073, 45448471, 55600481, 77290091, 108095623, 114986483, 155637463, 226226771, 302920139, 324657881, 519681709, 551321299, 618359839, 797005427, 944007487, 1039681147, 1124764853, 1923614047, 2135308631 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These are the primes arising in A098561. LINKS K. D. Bajpai, Table of n, a(n) for n = 1..15000 EXAMPLE From K. D. Bajpai, Dec 15 2014: (Start) 13 is in the sequence because the sum of the squares of the first 2 primes is 2^2 + 3^2 = 4 + 9 = 13, which is prime. 20477 is in the sequence because the sum of the squares of the first 18 primes is 2^2 + 3^2 + 5^2 + ... + 59^2 + 61^2 = 4 + 9 + 25 + ... + 3481 + 3721 = 20477, which is prime. (End) MATHEMATICA Select[Table[Sum[Prime[k]^2, {k, 1, n}], {n, 1000}], PrimeQ]  (* K. D. Bajpai, Dec 15 2014 *) PROG (PARI)  s=0; forprime(p=2, 1e6, t=s+=p^2; if(isprime(t), print1(t, ", "))) \\  K. D. Bajpai, Dec 15 2014 CROSSREFS Cf. A098561 (corresponding n), A024450 (sum of squares of primes), A066525 (sums of cubes of primes), A013918 (sums of primes). Cf. A000040, A006567. - Jonathan Vos Post, Aug 13 2009 Sequence in context: A215685 A262810 A203514 * A176183 A241879 A185408 Adjacent sequences:  A098559 A098560 A098561 * A098563 A098564 A098565 KEYWORD nonn AUTHOR Rick L. Shepherd, Sep 14 2004 EXTENSIONS a(24)-a(26) from K. D. Bajpai, Dec 15 2014 a(42) in b-file corrected by Andrew Howroyd, Feb 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 14:32 EDT 2019. Contains 323480 sequences. (Running on oeis4.)